## PRESENTATION on T-CELL RECEPTOR

## **T-CELL RECEPTOR**

- Antigen-specific nature of T-cell responses implies that T cells possess an antigen-specific and clonally restricted receptors.
- T-cell receptor is a membrane bound and does not appears in a soluble form
- Antigen-binding interaction of T-cell receptors is weaker than that of Abs
- Most T-cell receptors are specific not for Ag alone but for Ag combined with a molecule encoded by the MHC.

- The molecule responsible for T-cell specificity is a heterodimer composed of either  $\alpha$  and  $\beta$  or  $\gamma$  and  $\delta$  chains.
- The  $\alpha\beta$  TCR is characterized by its high degree of specificity & thus considered a signature molecule of the adaptive immune system.
- By contrast, certain receptors on  $\gamma\delta$  T cells appear to recognize classes of antigens present on group of pathogens & so function in a manner more consistent with innate immunity.

Classical Experiment demonstrating self- MHC restriction of the T-cell receptor

- But CTLs failed to bind free LCM virus (why)????
- R.M zinkernagel and P.C Doherty experiment — nobel prize in 1966



Figure 9-1 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company



Figure 9-3 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Other TCRs are  $\gamma \delta$ 

## DIFFERENCES

### αβ RECEPTOR

- Orientation of V & C regions so called elbow angle b/t the long axes of the V & C is 147 degree
- Contributes to adaptive immunity
- Recognize Ag processed & presented in the context of an MHC
- Present in circulating blood

### γδ RECEPTOR

- Elbow angle is 111
  degree
- Contributes to innate immunity
- Do not required either MHC processing or presentation for Ag recognition
- Mainly present in peripheral blood

In humans the predominant receptor expressed on circulating  $\gamma\delta$  cells recognizes a microbial phospholipid Ag, 3formyl-1-butyl pyrophoshate ,found on microbacterium tuberculosis & other bacteria & parasite

#### Germ Line Organisation of the Mouse TCR Gene Segments

Mouse TCR  $\alpha$ -chain and  $\delta$ -chain DNA (chromosome 14)



 $\psi = pseudogene$ 

Figure 9-5 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

# TCR Multigene families in humans

- α chain chromosome 14
- $\delta$  chain chromosome 14
- $\beta$  chain chromosome 7
- γ chain chromosome 7

GENE REARRANGEMENT- YIELDING A FUNCTIONAL GENE ENCODING THE aB TCR



© 2007 W. H. Freeman and Company

## MECHANISM OF TCR DNA REARRANGEMENTS

Similar to the mechanism of Ig -gene rearrangement

Conserved heptamer & nonamer RSSs , containing 1/2 turn spacer sequences ,find flanking each V,D&J gene segment in TCR germ -line DNA

Follow 1/2 joining rule

RAG-1/2 recombinase by deletion al or inversional mech.



Rearranged ab-TCR genes showing the exons encode the various domains of the ab TCR

C<sub>β</sub>

CDR1 CDR2 CDR3

V<sub>β</sub>

#### **Generation of diversity in the TcR**

#### **COMBINATORIAL DIVERSITY** Multiple germline segments

In the human TcR

Variable (V) segments:  $\sim 70\alpha$ , 52 $\beta$ 

Diversity (D) segments: 0a, 2β

Joining (J) segments:  $61\alpha$ ,  $13\beta$ 

The need to pair  $\alpha$  and  $\beta$  chains to form a binding site doubles the potential for diversity

JUNCTIONAL DIVERSITY

Addition of non-template encoded (N) and palindromic (P) nucleotides at imprecise joints made between V-D-J elements

SOMATIC MUTATION IS NOT USED TO GENERATE DIVERSITY IN TCR

| TABLE 9-3                                                                                            | Sources of possib | ole diversity in | mouse imm      | nunoglobuli                   | n and TCR ge          | nes                |                |
|------------------------------------------------------------------------------------------------------|-------------------|------------------|----------------|-------------------------------|-----------------------|--------------------|----------------|
|                                                                                                      |                   | IMMUNOGLOBULINS  |                | $\alpha\beta$ T-CELL RECEPTOR |                       | γδ T-CELL RECEPTOR |                |
| Mechanism of diversity                                                                               |                   | H Chain          | к Chain        | $\alpha$ Chain                | β <b>Chain</b>        | $\gamma$ Chain     | δ <b>Chain</b> |
| ESTIMATED NUMBER OF FUNCTIONAL GENE SEGMENTS*                                                        |                   |                  |                |                               |                       |                    |                |
| v                                                                                                    |                   | 101              | 85             | 79                            | 21                    | 7                  | 6              |
| D                                                                                                    |                   | 13               | 0              | 0                             | 2                     | 0                  | 2              |
| J                                                                                                    |                   |                  | 4              | 38                            | 11                    | 3                  | 2              |
| POSSIBLE NUMBER OF COMBINATIONS <sup>†</sup>                                                         |                   |                  |                |                               |                       |                    |                |
| Combinatorial V-J                                                                                    |                   | 101 × 13 × 4     | 85 × 4         | 79 × 38                       | 21 	imes 2 	imes 11   | 7 × 3              | 6×2×2          |
| and V-D-J joining                                                                                    |                   | $5.3	imes10^3$   | $3.4	imes10^2$ | $3.0	imes10^3$                | 4.6 × 10 <sup>2</sup> | 21                 | 24             |
| Alternative joining                                                                                  |                   | -                | -              | -                             | +                     | -                  | +              |
| of D gene segments                                                                                   |                   |                  |                |                               | (some)                |                    | (often)        |
| Junctional flexibility                                                                               |                   | +                | +              | +                             | +                     | +                  | +              |
| N-region nucleotide addition <sup>‡</sup>                                                            |                   | +                | 100710         | +                             | +                     | +                  | +              |
| P-region nucleotide addition                                                                         |                   | +                | +              | +                             | Ŧ                     | +                  | +              |
| Somatic mutation                                                                                     |                   | +                | +              |                               | -                     | -                  | -              |
| Combinatorial association of chains                                                                  |                   | +                |                | +                             |                       | +                  |                |
| *Immunoglobulin data from Table 5-2; TCR data from Baum et al., 2004, Nucleic Acids Research 32:D51. |                   |                  |                |                               |                       |                    |                |

<sup>+</sup>A plus sign (+) indicates mechanism makes a significant contribution to diversity but to an unknown extent.

A minus sign (-) indicates mechanism does not operate.

<sup>+</sup>See Figure 9-8d for theoretical number of combinations generated by N-region addition.



Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company